China Hot selling 16t Bevel Gear for CZPT Imagerunner Advance 6055 6065 6075 6255 worm gearbox

Product Description

Type: 16T Bevel Gear
For Use in: Canon imageRUNNER ADVANCE 6055
Canon imageRUNNER ADVANCE 6065
Canon imageRUNNER ADVANCE 6075
Canon imageRUNNER ADVANCE 6255
Canon imageRUNNER ADVANCE 6265
Canon imageRUNNER ADVANCE 6275
Canon imageRUNNER ADVANCE 8085
Canon imageRUNNER ADVANCE 8095
Canon imageRUNNER ADVANCE 8105
Canon imageRUNNER ADVANCE 8205
Canon imageRUNNER ADVANCE 8285
Canon imageRUNNER ADVANCE 8295
OEM Code: FU0-0054-000

Feature and Specifications:

  1. We have been focusing on Copier & Printer parts Since 2007. Resonable price is for qualified products. Our products have been exported to 38 countries, and we have a few of loyal customers.
  2. Products are clearly labeled and neutrally packed without any special requirements.
  3. Once order is comfirmed, delivery will be arranged in 3~5 days. In case of loss, if any change is needed, please contact our sales ASAP.
  4. Delay may happen because of changable stock. We will try our best to deliver on time. Your understanding is also appreciated.
  5. Products are double checked before delivery, but damagement may happen during transportation. Please check the outlook of cartons, open and check the defective ones. Only in that way damages could be compensated by express companies. 
  6. Even QC system guarantees the quality, defects may also exist. We will provide 1:1 replacement in that case.
  7. We favor Western Union for lower bank charges. Other payment methods are also acceptable according to the amount. Please contact our sales for reference.

FAQ
1.Why choose us?
We focus on copier and printer parts for more than 10 years. We integrate all resources and provide you with the most suitable products for long run business.

2.Do you have quality guarantee?
Any quality problem will be 100% replacement.

3.Do you provide us with the transportation?
Yes, there are 3 options:
Option 1 – Express (door to door service). It is fast and convenient for small parcels,  deliver via DHL/Fedex/UPS/TNT…
Option 2 – Air-cargo (airport to airport service). It is a cost-effective way if the cargo is over 45kg, you need to do the custom clearance.
Option 3 – Sea-cargo. If the order is not urgent, this is a good choice to save shipping cost, it takes about 1 month.

4.How much is the shipping cost?
Depends on the quantity, we would be pleased to check the best way and cheapest cost for you if you tell us your plHangZhou order quantity.

5.Are the taxes included in your prices?
All prices we offer are ex-work prices, not include tax/duty in your country and delivery charges.

6.How can I pay?
Usually T/T.
We also accept Western union (for small amount) and Paypal (need to add 5% extra fee)

Shipping Cost:

Estimated freight per unit.



To be negotiated
For Printer Brand: Canon
Type: Gear
Replacement: 1:1
Customization:
Available

|

Customized Request

bevel gear

Are bevel gears suitable for high-torque applications?

Bevel gears can indeed be suitable for high-torque applications, depending on various factors such as the specific design, material selection, and proper application engineering. Here’s a detailed explanation:

Bevel gears are known for their ability to transmit power between intersecting shafts at different angles. They can handle significant torque loads and are commonly used in applications that require high-torque transmission. However, the suitability of bevel gears for high-torque applications depends on the following factors:

  • Design: The design of the bevel gears plays a crucial role in their ability to handle high torque. Factors such as tooth profile, size, and geometry impact the load-carrying capacity and torque transmission capability. Bevel gears with robust and optimized designs, including suitable tooth profiles and adequate tooth engagement, can effectively handle high-torque applications.
  • Material Selection: The choice of materials for bevel gears is critical in high-torque applications. Gears need to be made from materials with high strength, hardness, and wear resistance to withstand the forces and stresses involved in transmitting high torque. Common materials used for bevel gears include alloy steels, carburizing steels, and specialty alloys. Material selection should consider the specific torque requirements, operating conditions, and anticipated loads to ensure the gears can handle the desired torque levels.
  • Lubrication: Proper lubrication is essential for reducing friction, wear, and heat generation in high-torque bevel gear applications. Adequate lubrication helps maintain a lubricating film between the gear teeth, minimizing metal-to-metal contact and associated losses. The lubricant type, viscosity, and replenishment schedule should be selected based on the torque and operating conditions to ensure effective lubrication and minimize gear wear.
  • Gear Size and Ratio: The size of the bevel gears and the gear ratio can influence their torque-handling capability. Larger gears generally have greater tooth strength and load-carrying capacity, making them more suitable for high-torque applications. The gear ratio should also be considered to ensure it is appropriate for the desired torque transmission and to avoid excessive loads on the gears.
  • Operating Conditions: The operating conditions, including speed, temperature, and shock loads, must be taken into account when determining the suitability of bevel gears for high-torque applications. Higher speeds and extreme operating temperatures can affect the gear material properties, lubrication performance, and overall gear system efficiency. Proper cooling, temperature control, and gear protection measures should be implemented to maintain reliable performance under high-torque conditions.

By considering these factors and properly engineering the bevel gear system, it is possible to utilize bevel gears in high-torque applications effectively. However, it is crucial to consult with experienced engineers and perform thorough analysis and testing to ensure the gears can handle the specific torque requirements of the application.

bevel gear

Can bevel gears be used in automotive applications?

Yes, bevel gears can be used in automotive applications due to their unique characteristics and ability to transmit power between intersecting shafts at different angles. Here’s a detailed explanation:

Bevel gears are commonly found in various automotive systems and components, offering several advantages for specific applications. Here are some key automotive applications where bevel gears are utilized:

  1. Differential: One of the primary applications of bevel gears in automotive systems is in the differential mechanism. The differential is responsible for distributing torque between the drive wheels while allowing them to rotate at different speeds, especially during cornering. Bevel gears, specifically hypoid gears, are used in the differential to transfer power from the driveshaft to the wheel axles at right angles. The compact size and high torque transmission capability of bevel gears make them suitable for this critical drivetrain component.
  2. Power Transfer: Bevel gears are utilized in automotive power transfer systems, such as transfer cases and drivelines. Transfer cases, commonly found in four-wheel drive (4WD) and all-wheel drive (AWD) vehicles, transfer power from the transmission to the front and rear axles. Bevel gears enable the necessary change in direction and torque transmission between the input and output shafts of the transfer case. Similarly, bevel gears can be used in drivelines to transfer power between differentials or between the transmission and the axles.
  3. Steering Systems: Bevel gears play a role in automotive steering systems, particularly in rack-and-pinion steering mechanisms. In these systems, bevel gears are used to convert the rotational motion of the steering wheel into the linear motion required for steering. Bevel gears help change the direction of motion, enabling the driver to control the vehicle’s steering angle. The compact size and precise motion transmission characteristics of bevel gears make them suitable for these steering applications.
  4. Auxiliary Systems: Bevel gears find application in various auxiliary automotive systems. For example, they can be used in engine timing systems to drive camshafts and synchronize valve operation. Bevel gears can also be employed in automotive differentials with limited-slip or locking capabilities, enhancing traction and vehicle stability in challenging road conditions. Additionally, they can be found in power seat adjusters, sunroof mechanisms, and other vehicle systems where torque transmission at different angles is required.

Bevel gears used in automotive applications are typically designed to withstand high loads, operate with minimal noise and vibration, and provide reliable power transmission. They are often manufactured from durable materials, such as alloy steels, and undergo heat treatment processes to enhance their strength and wear resistance.

It is important to note that the specific design and selection of bevel gears for automotive applications depend on factors such as torque requirements, space limitations, operating conditions, and cost considerations. Gear engineers and automotive manufacturers carefully consider these factors to ensure optimal performance, efficiency, and reliability in automotive systems.

In summary, bevel gears are extensively used in automotive applications, including differentials, power transfer systems, steering mechanisms, and auxiliary systems. Their ability to transmit power at varying angles, compact size, and robust construction make them well-suited for the demanding requirements of the automotive industry.

bevel gear

How do bevel gears differ from other types of gears?

Bevel gears have distinct characteristics that set them apart from other types of gears. Here’s a detailed explanation of how bevel gears differ from other gears:

1. Tooth Geometry: Bevel gears have teeth cut on the cone-shaped surface of the gears, whereas other types of gears, such as spur gears and helical gears, have teeth cut on cylindrical surfaces. The tooth geometry of bevel gears allows them to accommodate intersecting shafts and transmit rotational motion at different angles.

2. Axis Orientation: Bevel gears have intersecting axes, meaning the shafts they are mounted on intersect each other. In contrast, other types of gears typically have parallel or skewed axes. The intersecting axis of bevel gears allows for changes in direction and allows for power transmission between shafts that are not in a straight line.

3. Types of Bevel Gears: Bevel gears come in different variations, including straight bevel gears, spiral bevel gears, and hypoid bevel gears. Straight bevel gears have straight-cut teeth and intersect at a 90-degree angle. Spiral bevel gears have curved teeth that are gradually cut along the gear surface, providing smoother engagement and reduced noise. Hypoid bevel gears have offset axes and are used when the intersecting shafts are non-parallel. Other types of gears, such as spur gears and helical gears, also have their own variations but do not typically involve intersecting axes.

4. Direction of Motion: Bevel gears can change the direction of rotational motion between intersecting shafts. Depending on the orientation of the gears, the direction of rotation can be reversed. This capability makes bevel gears suitable for applications where changes in direction are required. In contrast, other gears, such as spur gears and helical gears, transmit motion in a specific direction along parallel or skewed axes.

5. Load Distribution: Bevel gears distribute loads differently compared to other gears. Due to the conical shape of the gears, the contact area between the teeth changes as the gears rotate. This can result in varying load distribution along the gear teeth. Other gears, such as spur gears and helical gears, have a consistent load distribution along their teeth due to their cylindrical shape.

6. Applications: Bevel gears are commonly used in applications where changes in direction or speed of rotational motion are required, such as automotive differentials, marine propulsion systems, and power transmission systems. Other types of gears, such as spur gears and helical gears, are more commonly used in applications where parallel or skewed shafts are involved and changes in direction are not necessary.

While bevel gears have their unique characteristics, it’s important to note that different types of gears have their own advantages and applications. The selection of the appropriate gear type depends on factors such as the application requirements, operating conditions, space limitations, and load considerations.

In summary, bevel gears differ from other types of gears in terms of tooth geometry, axis orientation, types of variations available, direction of motion, load distribution, and applications. Their ability to accommodate intersecting shafts and change the direction of rotational motion makes them suitable for specific applications where other types of gears may not be as effective.

China Hot selling 16t Bevel Gear for CZPT Imagerunner Advance 6055 6065 6075 6255 worm gearboxChina Hot selling 16t Bevel Gear for CZPT Imagerunner Advance 6055 6065 6075 6255 worm gearbox
editor by CX 2023-09-06